新闻动态
NEWS FEED
您现在的位置:
首页
-
-
-
在i.MX RT中使用LwIP协议栈浅析

在i.MX RT中使用LwIP协议栈浅析

  • 分类:行业动态
  • 作者:Henry Lu@NXP
  • 来源:恩智浦MCU加油站
  • 发布时间:2022-11-03 11:35
  • 访问量:

【概要描述】 LWIP协议与网络分层 LwIP(Light weight IP),是一种轻量化且开源的TCP/IP协议栈,它可以在有限的RAM和ROM条件下,实现一个完整的TCP/IP 协议栈。此外,LwIP既可以移植到操作系统上运行,也可以在无操作系统的情况下独立运行。    TCP/IP协议栈的模型结构如下图所示,由于TCP/IP协议栈的出现时间较早,所以没有按照传统的7层OSI网络模型进行设计,一共只分为了4层,分别为网络接口层,网络层,传输层以及应用层,LwIP协议栈的网络模型与之类似。 网络接口层主要通过双绞线,光纤,无线等方式进行网络上数据帧的发送和接收。网络接口层将网络层的数据组装成自己特定的帧进行发送,同时也会接收数据帧进行解析,并将解析过后的数据发送给网络层。     网络层负责在主机之间的通信过程之中选择数据包的传输路径,并且在接收到传入的数据报时会检验其有效性,并递交给上层。     传输层主要提供应用程序之间的通信服务,它会系统的管理两端数据之间的交互。    应用层简单来说就是利用传输层提供的功能发送自己的数据到对方。   LWIP协议栈初始化 在开始传输数据之前,首先要进行一系列的初始化操作,本文以i.MX RT1060 SDK中的Demo "evkmimxrt1060_lwip_udppecho_bm"为例,该代码可以通过MCUXpresso IDE进行导入。 netif_add函数用来挂载网络接口,并完成网络通信之前的大部分初始化工作,包括PHY芯片的初始化,i.MX RT1060上ENET外设初始化,以及一些通信过程中用到的相关数据结构的初始化。 PHY芯片的初始化是在ethernetif_phy_init之中完成,包括MDIO初始化,网口自动协商,网口连接等操作。 PHY初始化函数以及ENET初始化函数都在ethernetif0_init函数中被调用,并且该函数被作为一个实参传入netif_add之中并被在其中被调用,因此netif_add不仅完成了网络接口的挂载,还完成了接口相关的一系列初始化工作。 此外,在进行网络接口相关初始化的同时,也完成了对一系列数据结构的初始化,此处介绍一些在网络通信过程中用到的结构体。 enet_rx_bd_struct_t, 该结构体一般用来定义buffer descriptor,网络接口层接收到的数据一般就封装在buffer descriptor之中。 结构体定义如下图所示,其中length代表buffer descriptor之中数据的长度,control之中会存储一些与buffer descriptor相关的状态信息,并且支持enhanced buffer descriptor。 enet_rx_bd_ring_t结构体,如下图所示,每一条ring都是由buffer descriptor组成的。 Ring结构体中的rxBdBase成员就是第一个buffer descriptor的地址,rxGenIdx指的是当前buffer descriptor的序号,rxRingLen指的是这条Ring中共有几个buffer descriptor。 pbuf结构体,pbuf结构体是用来描述lwip协议栈中数据包的结构体。它是以链表的形式存在的,pbuf之中会存在指针指向下一个pubf 。 由于在case之中,使用的是UDP通信,因此还需要进行一些UDP相关的初始化设置。例如调用udp_bind函数,对UDP控制块中的local_port,local_ip等参数进行绑定,以及调用udp_recv在udp控制块上进行一些回调函数的绑定等等,至于什么是UDP控制块,在后面会进行介绍。 LWIP网络接口层 网络接口层数据接收 在udpecho demo之中是通过轮询的方法来实现数据接收,使用的是raw/callback api, 除了这种api之外lwip还提供socket api等,不过需要操作系统的支持。 在while循环中首先会去调用ethernetif_input函数,该函数中会调用ethernetif_linkinput函数,在ethernetif_linkinput之中又会去调用ENET_GetRxFrame和ethernetif_rx_frame_to_pbufs函数。    在ENET_GetRxFrame函数中会把网络接口中接收到的数据搬运到RxFrame之中,然后ethernetif_rx_frame_to_pbufs函数又会把RxFrame之中的数据搬运到pbufs之中,接下来就会调用ethernet_input函数,在lwip源码之中的ethernet.c文件中被定义,主要用于无操作系统时候网络层去处理接收到的数据帧,然后往上层递交,对于不同的数据包进行不同的处理,如果是 ARP包,则调用etharp_input函数;如果是 IP 包,则调用 ip4_input函数,通过这些函数将数据包递交给 IP 层处理。 网络接口层数据发送 在网络层发送数据时,会调用网络接口层的ethernet_output函数,ethernet_output函数之中又会去调用ethernetif_linkoutput函数,当数据较大需要用多个pbuf进行存储的时候,pbuf以链表的形式存在,所以需要将这些链表中的数据进行合并,如下图所示。 操作完成后通过ENET_SendFrame函数来完成数据的发送;最后数据会通过网络接口传输出去。   LWIP网络层 IP协议 IP协议是一种经典的网络层协议,IP协议(Internet Protocol),又称之为网际协议,IP 协议处于IP层工作,它是整个TCP/IP协议栈的核心协议,上层协议都要依赖IP协议提供的服务,IP协议负责将数据报从源主机发送到目标主机,并通过IP地址作为唯一识别码。简单来说,不同主机之间的IP地址是不一样的,在发送数据报的过程中,IP协议还可能对数据报进行分片处理,同时在接收数据报的时候,还可能需要对分片的数据报进行重装等等。 IP协议是一种无连接的不可靠数据报交付协议,协议本身不提供任何的错误检查与恢复机制,需要传输层协议来完成这些功能。 IP地址 在TCP/IP设计过程中,设计人员为每一台主机分配一个32bit的IP地址,只有具有有效的IP地址的主机才能接入互联网中与其他主机进行通信。 IP数据报 IP数据包一般由IP首部和数据组成,首部一般有20-60字节,其中有40字节是可选的,一般首部仅由20字节组成,IP数据报结构如下图所示。 为了方便对IP首部进行读取或写入操作,在lwip源码之中定义了ip_hdr结构体来表示ip数据报首部。 IP层数据接收 在上文提到,对于不同的数据包进行不同的处理,如果是ARP包,则调用etharp_input函数去处理;如果是IP包,则交给IP相关函数去处理。 在udpecho demo中使用的是IPV4协议,因此,会调用ip4_input函数。 在ip4_input函数中会对ip数据报的相关字段进行检验,例如长度,校验和,版本号等等,也会判断该数据包是否是发送给本地的,如果不是发送给本地的数据包,可能还要对其进行转发或者丢弃,如果数据报没有问题,IP层就会根据传输层的协议类型将数据包传送到不同的入口函数之中,例如udp_input, tcp_input函数等。 IP层数据发送 在传输层协议需要通过IP层来发送数据时,在上层函数之中会调用ip4_output_if_src函数,在该函数中,又会去调用ip4_output_if_opt_src函数,它会将传输数据封装到ip数据报之中,填写数据报之中的目标IP地址,源IP地址,协议类型等相关信息。然后再去调用etharp_output(),它会解析MAC地址,组装以太网帧并并发送。在etharp_output()函数之中,最终会去调用网络接口层的相关发送函数。 LWIP传输层与应用层 网络层已经通过IP协议等完成了数据报在各台主机之间传输的的功能,但是数据还没有到达最终目的地—主机上的某个特定应用程序。 IP层通过传输层的协议将数据包递交给应用程序,常用的传输层协议有UDP协议,TCP协议等。 此处以UDP协议为例,它是一种较为简单的传输层协议,经常应用于局域网环境以及视频播放领域,以UDP为例结合SDK代码讲解一下传输层是如何实现数据交互的。   UDP报文 在使用UDP传输数据时,它会将数据封装在UDP报文之中,在IP层又会将数据包封装在IP报文之中,在物理层又会将IP数据包封装在物理数据帧之中。 一份用户数据在被发送时共经历了三次封装。 UDP相关数据结构 在LWIP源码的udp.h之中,定义了报文首部数据结构以及UDP控制块。 LwIP报文首部数据结构为udp_hdr, 定义了 UDP 报文首部的各个字段, 分别为16位源端口号src, 16位目标端口号dest, 16位用户数据报总长度, 以及16位的校验和。 LwIP还定义了UDP控制块,记录与UDP通信的所有相关信息,如源端口号、目标端口号、源IP地址、目标IP地址以及收到数据时的回调函数等等,系统会为每一个基于UDP协议的进程创建一个UDP控制块,并且将其与对应的端口绑定,并将所有的UDP控制块用一个链表连接起来。当UDP接收到一个报文的时候,会去遍历链表上的所有控制块,通过端口号来找到匹配的控制块,并将数据通过回调函数传递到上层应用。 UDP报文接收 在IP层,当接收到一个包含UDP报文的数据报时,udp_input函数就会被调用,该函数之中进行了一些报文合法性的检测,然后根据报文中的端口信息查找UDP控制块,最后通过UDP控制块之中的回调函数recv_udp将数据传递到应用层,如果找不到对应的端口,那么会返回一个端口不可达数据包。 UDP报文发送 UDP报文发送依靠IP层提供的服务,用户在发送数据时需要在应用程序之中调用udp_send或者是udp_sendto,应用程序之中将用户数据填到pbuf数据区域,并将pubf作为参数传入udp_send或udp_sendto之中。 udp_send和udp_sendto之间的区别就是udp_sendto将数据发送到指定的ip地址和端口号,udp_send将数据发送到UDP控制块之中定义的ip地址和端口号。udp_send实际上也是调用udp_sendto来进行数据的发送,最终这两个函数都是会去调用udp_sendto_if。 dp_sendto_if函数之中会完成udp报文的组装和发送,最终会调用Ip层的发送函数去发送报文。   LWIP应用层 在应用层一般会通过调用传输层的一些函数来编写特定的应用程序,从而实现数据的传递,在udpecho demo之中,当接收到数据之后,在udp控制块中绑定的接收回调函数中又会去调用udp_sendto函数。 除了上面介绍的一些协议外,LWIP还支持ICMP、IGMP、PPP、DHCP等协议,并且SOCKET API以及NETCONN API使用起来更加简单,但是RAW/Callback API的使用有助于更好的理解LWIP协议。 对LWIP协议栈感兴趣的读者可自行深入了解。   关注威旺达网站及微信公众号,了解 NXP MCU更多信息.

在i.MX RT中使用LwIP协议栈浅析

【概要描述】


LWIP协议与网络分层




LwIP(Light weight IP),是一种轻量化且开源的TCP/IP协议栈,它可以在有限的RAM和ROM条件下,实现一个完整的TCP/IP 协议栈。此外,LwIP既可以移植到操作系统上运行,也可以在无操作系统的情况下独立运行。 

  TCP/IP协议栈的模型结构如下图所示,由于TCP/IP协议栈的出现时间较早,所以没有按照传统的7层OSI网络模型进行设计,一共只分为了4层,分别为网络接口层,网络层,传输层以及应用层,LwIP协议栈的网络模型与之类似。



网络接口层主要通过双绞线,光纤,无线等方式进行网络上数据帧的发送和接收。网络接口层将网络层的数据组装成自己特定的帧进行发送,同时也会接收数据帧进行解析,并将解析过后的数据发送给网络层。 

   网络层负责在主机之间的通信过程之中选择数据包的传输路径,并且在接收到传入的数据报时会检验其有效性,并递交给上层。 

   传输层主要提供应用程序之间的通信服务,它会系统的管理两端数据之间的交互。

   应用层简单来说就是利用传输层提供的功能发送自己的数据到对方。

 




LWIP协议栈初始化




在开始传输数据之前,首先要进行一系列的初始化操作,本文以i.MX RT1060 SDK中的Demo "evkmimxrt1060_lwip_udppecho_bm"为例,该代码可以通过MCUXpresso IDE进行导入。

netif_add函数用来挂载网络接口,并完成网络通信之前的大部分初始化工作,包括PHY芯片的初始化,i.MX RT1060上ENET外设初始化,以及一些通信过程中用到的相关数据结构的初始化。

PHY芯片的初始化是在ethernetif_phy_init之中完成,包括MDIO初始化,网口自动协商,网口连接等操作。



PHY初始化函数以及ENET初始化函数都在ethernetif0_init函数中被调用,并且该函数被作为一个实参传入netif_add之中并被在其中被调用,因此netif_add不仅完成了网络接口的挂载,还完成了接口相关的一系列初始化工作。

此外,在进行网络接口相关初始化的同时,也完成了对一系列数据结构的初始化,此处介绍一些在网络通信过程中用到的结构体。



enet_rx_bd_struct_t, 该结构体一般用来定义buffer descriptor,网络接口层接收到的数据一般就封装在buffer descriptor之中。
结构体定义如下图所示,其中length代表buffer descriptor之中数据的长度,control之中会存储一些与buffer descriptor相关的状态信息,并且支持enhanced buffer descriptor。



enet_rx_bd_ring_t结构体,如下图所示,每一条ring都是由buffer descriptor组成的。

Ring结构体中的rxBdBase成员就是第一个buffer descriptor的地址,rxGenIdx指的是当前buffer descriptor的序号,rxRingLen指的是这条Ring中共有几个buffer descriptor。





pbuf结构体,pbuf结构体是用来描述lwip协议栈中数据包的结构体。它是以链表的形式存在的,pbuf之中会存在指针指向下一个pubf 。



由于在case之中,使用的是UDP通信,因此还需要进行一些UDP相关的初始化设置。例如调用udp_bind函数,对UDP控制块中的local_port,local_ip等参数进行绑定,以及调用udp_recv在udp控制块上进行一些回调函数的绑定等等,至于什么是UDP控制块,在后面会进行介绍。




LWIP网络接口层




网络接口层数据接收

在udpecho demo之中是通过轮询的方法来实现数据接收,使用的是raw/callback api, 除了这种api之外lwip还提供socket api等,不过需要操作系统的支持。

在while循环中首先会去调用ethernetif_input函数,该函数中会调用ethernetif_linkinput函数,在ethernetif_linkinput之中又会去调用ENET_GetRxFrame和ethernetif_rx_frame_to_pbufs函数。

   在ENET_GetRxFrame函数中会把网络接口中接收到的数据搬运到RxFrame之中,然后ethernetif_rx_frame_to_pbufs函数又会把RxFrame之中的数据搬运到pbufs之中,接下来就会调用ethernet_input函数,在lwip源码之中的ethernet.c文件中被定义,主要用于无操作系统时候网络层去处理接收到的数据帧,然后往上层递交,对于不同的数据包进行不同的处理,如果是 ARP包,则调用etharp_input函数;如果是 IP 包,则调用 ip4_input函数,通过这些函数将数据包递交给 IP 层处理。



网络接口层数据发送

在网络层发送数据时,会调用网络接口层的ethernet_output函数,ethernet_output函数之中又会去调用ethernetif_linkoutput函数,当数据较大需要用多个pbuf进行存储的时候,pbuf以链表的形式存在,所以需要将这些链表中的数据进行合并,如下图所示。

操作完成后通过ENET_SendFrame函数来完成数据的发送;最后数据会通过网络接口传输出去。

 




LWIP网络层




IP协议

IP协议是一种经典的网络层协议,IP协议(Internet Protocol),又称之为网际协议,IP 协议处于IP层工作,它是整个TCP/IP协议栈的核心协议,上层协议都要依赖IP协议提供的服务,IP协议负责将数据报从源主机发送到目标主机,并通过IP地址作为唯一识别码。简单来说,不同主机之间的IP地址是不一样的,在发送数据报的过程中,IP协议还可能对数据报进行分片处理,同时在接收数据报的时候,还可能需要对分片的数据报进行重装等等。

IP协议是一种无连接的不可靠数据报交付协议,协议本身不提供任何的错误检查与恢复机制,需要传输层协议来完成这些功能。

IP地址

在TCP/IP设计过程中,设计人员为每一台主机分配一个32bit的IP地址,只有具有有效的IP地址的主机才能接入互联网中与其他主机进行通信。

IP数据报

IP数据包一般由IP首部和数据组成,首部一般有20-60字节,其中有40字节是可选的,一般首部仅由20字节组成,IP数据报结构如下图所示。

为了方便对IP首部进行读取或写入操作,在lwip源码之中定义了ip_hdr结构体来表示ip数据报首部。

IP层数据接收

在上文提到,对于不同的数据包进行不同的处理,如果是ARP包,则调用etharp_input函数去处理;如果是IP包,则交给IP相关函数去处理。

在udpecho demo中使用的是IPV4协议,因此,会调用ip4_input函数。

在ip4_input函数中会对ip数据报的相关字段进行检验,例如长度,校验和,版本号等等,也会判断该数据包是否是发送给本地的,如果不是发送给本地的数据包,可能还要对其进行转发或者丢弃,如果数据报没有问题,IP层就会根据传输层的协议类型将数据包传送到不同的入口函数之中,例如udp_input, tcp_input函数等。



IP层数据发送

在传输层协议需要通过IP层来发送数据时,在上层函数之中会调用ip4_output_if_src函数,在该函数中,又会去调用ip4_output_if_opt_src函数,它会将传输数据封装到ip数据报之中,填写数据报之中的目标IP地址,源IP地址,协议类型等相关信息。然后再去调用etharp_output(),它会解析MAC地址,组装以太网帧并并发送。在etharp_output()函数之中,最终会去调用网络接口层的相关发送函数。






LWIP传输层与应用层




网络层已经通过IP协议等完成了数据报在各台主机之间传输的的功能,但是数据还没有到达最终目的地—主机上的某个特定应用程序。

IP层通过传输层的协议将数据包递交给应用程序,常用的传输层协议有UDP协议,TCP协议等。

此处以UDP协议为例,它是一种较为简单的传输层协议,经常应用于局域网环境以及视频播放领域,以UDP为例结合SDK代码讲解一下传输层是如何实现数据交互的。

 




UDP报文




在使用UDP传输数据时,它会将数据封装在UDP报文之中,在IP层又会将数据包封装在IP报文之中,在物理层又会将IP数据包封装在物理数据帧之中。

一份用户数据在被发送时共经历了三次封装。

UDP相关数据结构

在LWIP源码的udp.h之中,定义了报文首部数据结构以及UDP控制块。

LwIP报文首部数据结构为udp_hdr, 定义了 UDP 报文首部的各个字段, 分别为16位源端口号src, 16位目标端口号dest, 16位用户数据报总长度, 以及16位的校验和。

LwIP还定义了UDP控制块,记录与UDP通信的所有相关信息,如源端口号、目标端口号、源IP地址、目标IP地址以及收到数据时的回调函数等等,系统会为每一个基于UDP协议的进程创建一个UDP控制块,并且将其与对应的端口绑定,并将所有的UDP控制块用一个链表连接起来。当UDP接收到一个报文的时候,会去遍历链表上的所有控制块,通过端口号来找到匹配的控制块,并将数据通过回调函数传递到上层应用。



UDP报文接收

在IP层,当接收到一个包含UDP报文的数据报时,udp_input函数就会被调用,该函数之中进行了一些报文合法性的检测,然后根据报文中的端口信息查找UDP控制块,最后通过UDP控制块之中的回调函数recv_udp将数据传递到应用层,如果找不到对应的端口,那么会返回一个端口不可达数据包。



UDP报文发送

UDP报文发送依靠IP层提供的服务,用户在发送数据时需要在应用程序之中调用udp_send或者是udp_sendto,应用程序之中将用户数据填到pbuf数据区域,并将pubf作为参数传入udp_send或udp_sendto之中。

udp_send和udp_sendto之间的区别就是udp_sendto将数据发送到指定的ip地址和端口号,udp_send将数据发送到UDP控制块之中定义的ip地址和端口号。udp_send实际上也是调用udp_sendto来进行数据的发送,最终这两个函数都是会去调用udp_sendto_if。



dp_sendto_if函数之中会完成udp报文的组装和发送,最终会调用Ip层的发送函数去发送报文。

 




LWIP应用层




在应用层一般会通过调用传输层的一些函数来编写特定的应用程序,从而实现数据的传递,在udpecho demo之中,当接收到数据之后,在udp控制块中绑定的接收回调函数中又会去调用udp_sendto函数。



除了上面介绍的一些协议外,LWIP还支持ICMP、IGMP、PPP、DHCP等协议,并且SOCKET API以及NETCONN API使用起来更加简单,但是RAW/Callback API的使用有助于更好的理解LWIP协议。

对LWIP协议栈感兴趣的读者可自行深入了解。

 

关注威旺达网站及微信公众号,了解 NXP MCU更多信息.

  • 分类:行业动态
  • 作者:Henry Lu@NXP
  • 来源:恩智浦MCU加油站
  • 发布时间:2022-11-03 11:35
  • 访问量:
详情

LWIP协议与网络分层

LwIP(Light weight IP),是一种轻量化且开源的TCP/IP协议栈,它可以在有限的RAM和ROM条件下,实现一个完整的TCP/IP 协议栈。此外,LwIP既可以移植到操作系统上运行,也可以在无操作系统的情况下独立运行。 

  TCP/IP协议栈的模型结构如下图所示,由于TCP/IP协议栈的出现时间较早,所以没有按照传统的7层OSI网络模型进行设计,一共只分为了4层,分别为网络接口层,网络层,传输层以及应用层,LwIP协议栈的网络模型与之类似。

网络接口层主要通过双绞线,光纤,无线等方式进行网络上数据帧的发送和接收。网络接口层将网络层的数据组装成自己特定的帧进行发送,同时也会接收数据帧进行解析,并将解析过后的数据发送给网络层。 

   网络层负责在主机之间的通信过程之中选择数据包的传输路径,并且在接收到传入的数据报时会检验其有效性,并递交给上层。 

   传输层主要提供应用程序之间的通信服务,它会系统的管理两端数据之间的交互。

   应用层简单来说就是利用传输层提供的功能发送自己的数据到对方。

 

LWIP协议栈初始化

在开始传输数据之前,首先要进行一系列的初始化操作,本文以i.MX RT1060 SDK中的Demo "evkmimxrt1060_lwip_udppecho_bm"为例,该代码可以通过MCUXpresso IDE进行导入。

netif_add函数用来挂载网络接口,并完成网络通信之前的大部分初始化工作,包括PHY芯片的初始化,i.MX RT1060上ENET外设初始化,以及一些通信过程中用到的相关数据结构的初始化。

PHY芯片的初始化是在ethernetif_phy_init之中完成,包括MDIO初始化,网口自动协商,网口连接等操作。

PHY初始化函数以及ENET初始化函数都在ethernetif0_init函数中被调用,并且该函数被作为一个实参传入netif_add之中并被在其中被调用,因此netif_add不仅完成了网络接口的挂载,还完成了接口相关的一系列初始化工作。

此外,在进行网络接口相关初始化的同时,也完成了对一系列数据结构的初始化,此处介绍一些在网络通信过程中用到的结构体。

  • enet_rx_bd_struct_t, 该结构体一般用来定义buffer descriptor,网络接口层接收到的数据一般就封装在buffer descriptor之中。
    结构体定义如下图所示,其中length代表buffer descriptor之中数据的长度,control之中会存储一些与buffer descriptor相关的状态信息,并且支持enhanced buffer descriptor。

enet_rx_bd_ring_t结构体,如下图所示,每一条ring都是由buffer descriptor组成的。

Ring结构体中的rxBdBase成员就是第一个buffer descriptor的地址,rxGenIdx指的是当前buffer descriptor的序号,rxRingLen指的是这条Ring中共有几个buffer descriptor。

  • pbuf结构体,pbuf结构体是用来描述lwip协议栈中数据包的结构体。它是以链表的形式存在的,pbuf之中会存在指针指向下一个pubf 。

由于在case之中,使用的是UDP通信,因此还需要进行一些UDP相关的初始化设置。例如调用udp_bind函数,对UDP控制块中的local_port,local_ip等参数进行绑定,以及调用udp_recv在udp控制块上进行一些回调函数的绑定等等,至于什么是UDP控制块,在后面会进行介绍。

LWIP网络接口层

网络接口层数据接收

在udpecho demo之中是通过轮询的方法来实现数据接收,使用的是raw/callback api, 除了这种api之外lwip还提供socket api等,不过需要操作系统的支持。

在while循环中首先会去调用ethernetif_input函数,该函数中会调用ethernetif_linkinput函数,在ethernetif_linkinput之中又会去调用ENET_GetRxFrame和ethernetif_rx_frame_to_pbufs函数。

   在ENET_GetRxFrame函数中会把网络接口中接收到的数据搬运到RxFrame之中,然后ethernetif_rx_frame_to_pbufs函数又会把RxFrame之中的数据搬运到pbufs之中,接下来就会调用ethernet_input函数,在lwip源码之中的ethernet.c文件中被定义,主要用于无操作系统时候网络层去处理接收到的数据帧,然后往上层递交,对于不同的数据包进行不同的处理,如果是 ARP包,则调用etharp_input函数;如果是 IP 包,则调用 ip4_input函数,通过这些函数将数据包递交给 IP 层处理。

网络接口层数据发送

在网络层发送数据时,会调用网络接口层的ethernet_output函数,ethernet_output函数之中又会去调用ethernetif_linkoutput函数,当数据较大需要用多个pbuf进行存储的时候,pbuf以链表的形式存在,所以需要将这些链表中的数据进行合并,如下图所示。

操作完成后通过ENET_SendFrame函数来完成数据的发送;最后数据会通过网络接口传输出去。

 

LWIP网络层

IP协议

IP协议是一种经典的网络层协议,IP协议(Internet Protocol),又称之为网际协议,IP 协议处于IP层工作,它是整个TCP/IP协议栈的核心协议,上层协议都要依赖IP协议提供的服务,IP协议负责将数据报从源主机发送到目标主机,并通过IP地址作为唯一识别码。简单来说,不同主机之间的IP地址是不一样的,在发送数据报的过程中,IP协议还可能对数据报进行分片处理,同时在接收数据报的时候,还可能需要对分片的数据报进行重装等等。

IP协议是一种无连接的不可靠数据报交付协议,协议本身不提供任何的错误检查与恢复机制,需要传输层协议来完成这些功能。

IP地址

在TCP/IP设计过程中,设计人员为每一台主机分配一个32bit的IP地址,只有具有有效的IP地址的主机才能接入互联网中与其他主机进行通信。

IP数据报

IP数据包一般由IP首部和数据组成,首部一般有20-60字节,其中有40字节是可选的,一般首部仅由20字节组成,IP数据报结构如下图所示。

为了方便对IP首部进行读取或写入操作,在lwip源码之中定义了ip_hdr结构体来表示ip数据报首部。

IP层数据接收

在上文提到,对于不同的数据包进行不同的处理,如果是ARP包,则调用etharp_input函数去处理;如果是IP包,则交给IP相关函数去处理。

在udpecho demo中使用的是IPV4协议,因此,会调用ip4_input函数。

在ip4_input函数中会对ip数据报的相关字段进行检验,例如长度,校验和,版本号等等,也会判断该数据包是否是发送给本地的,如果不是发送给本地的数据包,可能还要对其进行转发或者丢弃,如果数据报没有问题,IP层就会根据传输层的协议类型将数据包传送到不同的入口函数之中,例如udp_input, tcp_input函数等。

IP层数据发送

在传输层协议需要通过IP层来发送数据时,在上层函数之中会调用ip4_output_if_src函数,在该函数中,又会去调用ip4_output_if_opt_src函数,它会将传输数据封装到ip数据报之中,填写数据报之中的目标IP地址,源IP地址,协议类型等相关信息。然后再去调用etharp_output(),它会解析MAC地址,组装以太网帧并并发送。在etharp_output()函数之中,最终会去调用网络接口层的相关发送函数。

LWIP传输层与应用层

网络层已经通过IP协议等完成了数据报在各台主机之间传输的的功能,但是数据还没有到达最终目的地—主机上的某个特定应用程序。

IP层通过传输层的协议将数据包递交给应用程序,常用的传输层协议有UDP协议,TCP协议等。

此处以UDP协议为例,它是一种较为简单的传输层协议,经常应用于局域网环境以及视频播放领域,以UDP为例结合SDK代码讲解一下传输层是如何实现数据交互的。

 

UDP报文

在使用UDP传输数据时,它会将数据封装在UDP报文之中,在IP层又会将数据包封装在IP报文之中,在物理层又会将IP数据包封装在物理数据帧之中。

一份用户数据在被发送时共经历了三次封装。

UDP相关数据结构

在LWIP源码的udp.h之中,定义了报文首部数据结构以及UDP控制块。

LwIP报文首部数据结构为udp_hdr, 定义了 UDP 报文首部的各个字段, 分别为16位源端口号src, 16位目标端口号dest, 16位用户数据报总长度, 以及16位的校验和。

LwIP还定义了UDP控制块,记录与UDP通信的所有相关信息,如源端口号、目标端口号、源IP地址、目标IP地址以及收到数据时的回调函数等等,系统会为每一个基于UDP协议的进程创建一个UDP控制块,并且将其与对应的端口绑定,并将所有的UDP控制块用一个链表连接起来。当UDP接收到一个报文的时候,会去遍历链表上的所有控制块,通过端口号来找到匹配的控制块,并将数据通过回调函数传递到上层应用。

UDP报文接收

在IP层,当接收到一个包含UDP报文的数据报时,udp_input函数就会被调用,该函数之中进行了一些报文合法性的检测,然后根据报文中的端口信息查找UDP控制块,最后通过UDP控制块之中的回调函数recv_udp将数据传递到应用层,如果找不到对应的端口,那么会返回一个端口不可达数据包。

UDP报文发送

UDP报文发送依靠IP层提供的服务,用户在发送数据时需要在应用程序之中调用udp_send或者是udp_sendto,应用程序之中将用户数据填到pbuf数据区域,并将pubf作为参数传入udp_send或udp_sendto之中。

udp_send和udp_sendto之间的区别就是udp_sendto将数据发送到指定的ip地址和端口号,udp_send将数据发送到UDP控制块之中定义的ip地址和端口号。udp_send实际上也是调用udp_sendto来进行数据的发送,最终这两个函数都是会去调用udp_sendto_if。

dp_sendto_if函数之中会完成udp报文的组装和发送,最终会调用Ip层的发送函数去发送报文。

 

LWIP应用层

在应用层一般会通过调用传输层的一些函数来编写特定的应用程序,从而实现数据的传递,在udpecho demo之中,当接收到数据之后,在udp控制块中绑定的接收回调函数中又会去调用udp_sendto函数。

除了上面介绍的一些协议外,LWIP还支持ICMP、IGMP、PPP、DHCP等协议,并且SOCKET API以及NETCONN API使用起来更加简单,但是RAW/Callback API的使用有助于更好的理解LWIP协议。

对LWIP协议栈感兴趣的读者可自行深入了解。

 

关注威旺达网站及微信公众号,了解 NXP MCU更多信息.

关键词:

扫二维码用手机看

相关新闻

无创血糖仪的优势与挑战:解读新技术的前景与限制

无创血糖仪的优势与挑战:解读新技术的前景与限制

在中国,改革开放以来,人们的生活水平逐步提高,从吃饱到吃好,现在更多数人选择吃的健康。因为现在的人类基本都在得“富贵病”,肥胖,高血压,高血脂,高血糖等。其中,血糖监测是糖尿病管理的重要组成部分,《中国血糖监测临床应用指南(2021版)》显示,临床常用的血糖监测方法包括毛细血管血糖监测、糖化血红蛋白(HbA1c)、糖化白蛋白(GA)和持续葡萄糖(CGM)监测等。
2023-07-12
恩智浦发布新一代安全高能效i.MX 91系列,为广泛的边缘应用扩展Linux功能!

恩智浦发布新一代安全高能效i.MX 91系列,为广泛的边缘应用扩展Linux功能!

恩智浦半导体正式发布i.MX 91应用处理器系列。凭借恩智浦二十多年来在开发多市场应用处理器方面的领先优势,i.MX 91系列提供了安全、多功能、高能效的优化组合,可满足下一代基于Linux的物联网和工业应用的需求。 
2023-06-15
恩智浦人工智能创新实践平台正式启动!

恩智浦人工智能创新实践平台正式启动!

  恩智浦半导体宣布,设于天津的人工智能应用创新中心二期项目——人工智能创新实践平台(以下称“创新实践平台”)正式启动。天津市科学技术局副局长梅志红,天津经济技术开发区管理委员会副主任金香花;恩智浦全球销售执行副总裁Ron Martino,恩智浦资深副总裁兼大中华区主席李廷伟博士出席活动,共同见证恩智浦进一步深耕中国市场、服务中国客户的决心和切实行动。
2023-05-26
MCU在烟感传感器上如何选型

MCU在烟感传感器上如何选型

独立烟感全称独立式光电感烟火灾探测报警器,是烟雾报警器系列产品中的一种,报警器采用的光电式感烟器件具有优良的生产工艺,工作稳定,抗辐射性好,当烟雾进入报警器探头,烟雾改变了探头感知的光线强度,继而触发报价;故障自检,自动上报,无需人工检修;此外无需外部供电,单独9V电池供电,搭载低功耗广域网物联网模块,如NBIOT,Lora,RF射频模块后,省去了繁琐的布线,施工成本低,安装简单;发生火灾时除了自身报警外,还可以通过无线上传到消防预警中心,并通过语音电话,app等形式通知安全责任人,第一时间处理火情;再加上传统的消防设备安装和出现故障维修极其不便,传统的烟感大部分年久失灵,必须进行设备的升级;故独立烟感可广泛用于工厂,商场,宾馆、门店、饭店、住宅等场所进行火灾安全监测及其传统消防设备的改造上,普通用户也可自行采购放置在家中作为火灾监控预警。
2023-05-26

20多年专注半导体

为国内各行业广大用户提供高品质的NXP半导体产品

SINCE 1997

 为您量身定制解决方案

联系我们

电话

全国统一服务热线

地址:北京市朝阳区广渠路15号金茂府小区23号院

公众号

威旺达公众号

Copyright © 2022  北京威旺达电子科技有限责任公司  All rights reserved